Repeated use of neonicotinoid insecticides has resulted in the first reported cases of Colorado potato beetle (Leptinotarsa decemlineata (Say)) resistance to imidacloprid. In the laboratory we determined susceptibility of the imidacloprid-resistant Colorado potato beetles from a population in Southern Maine to other insecticides currently registered for use on potato. This population was about 30-fold resistant to imidacloprid and could not be effectively controlled by its applications. Control mortality was significantly higher for the imidacloprid-resistant larvae than for the susceptible larvae, suggesting that fitness disadvantages may be associated with the resistance trait. Resistant larvae exhibited significantly less mortality than susceptible larvae when exposed to cyfluthrin, carbaryl, azinphosmethyl, and methamidophos. Their susceptibility to oxamyl was also somewhat reduced, although it did provide nearly 100% mortality at the highest concentration tested. Disulfoton was highly toxic to the resistant larvae. Oxamyl killed about 40% of the adults in greenhouse assays with potted potato plants, altered their feeding behavior (fewer adults up on plants), and reduced defoliation by more than 90%. Disulfoton was not lethal to adults, but significantly suppressed their feeding. In field trials with the resistant population, oxamyl and imidacloprid + spinosad provided the best beetle control. Novaluron had no detectable effect on beetle densities. There was little difference between the plots treated with imidacloprid or thiamethoxam and the untreated control. Our results suggest that insecticide rotation may be a valuable option for managing imidacloprid-resistant Colorado potato beetle populations. We also had a good consistency between the results of the Petri dish, greenhouse, and field experiments, indicating that screening under laboratory confinement may be useful when developing initial recommendations to potato growers in areas affected by resistance to neonicotinoids. [Full Text]